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Length-based mortality estimators have been developed as alternative assessment methods for data-limited stocks. We compared mortality
estimates from three methodologically related mean length-based methods to those from an age-structured model (ASM). We estimated
fishing mortality and determined overfishing status, i.e. if F/FMSY > 1, for six stocks which support important recreational and commercial
fisheries in the southeastern United States. The similarities in historical fishing mortality between the length-based methods and the most re-
cent assessments varied among the case studies, but the classification of overfishing status in the terminal year did not differ based on the
choice of model for all six stocks. There was also high agreement in the number of overfishing years within different historical periods.
Applications of length-based methods can be consistent with the results that might be obtained from an ASM. In one case, diagnostics were
used to identify the problems with the length-based estimators. The potential for determining overfishing status from these methods can en-
courage data collection programmes for unassessed stocks.
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Introduction
Simpler, alternative stock assessment methods for exploited

stocks are generally desirable when a more complex age-

structured stock assessment model may not be viable or practical

from a management perspective (Chrysafi and Kuparinen, 2016).

Simple methods are largely used in “data-limited” situations,

where the data available for an assessment may be restrictive, for

example, due to lack of sampling resources (Bentley, 2015). In

these cases, tractable assessment methods typically make neces-

sary simplifying assumptions regarding the population. However,

a more comprehensive stock assessment model, such as an age-

structured model (ASM), is typically used in “data-rich” scenarios

where ageing information and multiple sources of data exist

(Dichmont et al., 2016). In both data-limited and data-rich sce-

narios, analytical methods are used to estimate historical trends

in fishing mortality (F), biomass (B), or both. Model output, in-

cluding forecasts and reference points, from such methods can be

used to provide short-term management advice.

In data-limited situations, length-based assessment methods

are appealing because they are easy to use and length information

is easily collected for many fisheries. In conjunction with growth

parameters, simple methods typically estimate mortality from a

single size composition or mean length, often with equilibrium

assumptions (Beverton and Holt, 1956; Hordyk et al., 2015, 2016;

Kokkalis et al., 2015).

Recently, four related methods have been developed to analyse

time series of mean length. These methods expanded the estima-

tor of Beverton and Holt (1956), which estimates total mortality

(Z) from a single observation of mean length. Development of

these methods was motivated by the ability to relax the equilib-

rium assumptions of the Beverton–Holt method. Gedamke and

Hoenig (2006) developed a non-equilibrium method for estimat-

ing total mortality (in this paper, we denote this model as “ML”

to contrast from the mean length data). Changes in mortality

over time are characterized by stepwise changes, and the non-

equilibrium method accounts for the gradual change in mean
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length that arises following such a change. From a time series of

mean length, a historical series of mortality rates and the timing

of the changes in mortality are estimated. This method has also

been used with proxy reference points for MSY to determine

overfishing status, i.e. if F/FMSY > 1 (Huynh, 2016).

Subsequent extensions of Gedamke and Hoenig (2006) incor-

porate additional data types with mean lengths to relax additional

assumptions and evaluate goodness of fit. The approach can be

expanded to incorporate either recruitment indices to relax the

constant recruitment assumption (Gedamke et al., 2008), effort

to provide year-specific mortality estimates (Then et al., 2018),

or both (ICES, 2017). Indices of abundance also contain informa-

tion on mortality and can be used with mean lengths to estimate

mortality (Huynh et al., 2017). Here, these models will be

collectively referred to as ML-based models.

To evaluate how simpler, data-limited methods may perform rel-

ative to ASMs, the former can be applied to data sets from stocks for

which there are age-structured assessments (e.g. Dick and MacCall,

2011; Kokkalis et al., 2017). Synchrony in the results among models,

i.e. whether or not the historical stock trends are in agreement, can

be a form of endorsement for the data-limited methods. While there

is no guarantee that the ASM is correct nor that it produces precise

and accurate estimates, benchmark assessments undergo a thorough

peer-review process and the results of the ASMs usually represent

our best knowledge of the stock (Dichmont et al., 2016). If similar

results are obtained among models, then the use of simpler models

is inconsequential for classifying overfishing status. Use of the sim-

pler models could also be advantageous for management agencies to

allocate resources to stocks that have not been previously assessed.

In this study, we use three multi-year, ML-based methods to esti-

mate historical fishing mortality for six stocks in the southeastern

United States. These stocks are of interest because they have been

assessed using ASMs. The stocks are Gulf of Mexico (GOM) greater

amberjack Seriola dumerili, GOM Spanish mackerel Scomberomorus

maculatus, GOM cobia Rachycentron canadum, Atlantic (ATL) co-

bia, GOM king mackerel Scomberomorus cavalla, and ATL king

mackerel. The Beaufort Assessment Model (BAM; Williams and

Shertzer, 2015) was used for ATL cobia, while Stock Synthesis (SS;

Methot and Wetzel, 2013) was used for all others.

For these stocks, length composition data were used in the

age-structured assessments which were accepted as the basis

for management advice by NOAA (National Oceanic and

Atmospheric Administration) Fisheries. The length data from

these assessments were then obtained for analysis with the ML-

based methods. In an ASM, length data potentially contain infor-

mation on recruitment strength, mortality, and selectivity. While

these data primarily inform mortality with fixed assumptions

regarding recruitment and selectivity in the ML-based models, a

common subset of data allows for comparison of historical

mortality rates between these two types of models. We compared

the trends in historical fishing mortality and the classification of

overfishing status using F/FMSY estimates between the ML-based

models and the age-structured assessments. We also used model

diagnostics, i.e. residuals, for the ML-based models to explain

whether the methods were suitable for the particular stocks.

Methods
Stocks of interest and their assessments
Greater amberjack is managed under the Reef Fish Fishery

Management Plan, and Spanish mackerel, cobia, and king

mackerel are managed under the Coastal Migratory Pelagic

Fishery Management Plan of the Gulf of Mexico Fishery

Management Council and South Atlantic Fishery Management

Council. Each of the four species is considered to be separate

GOM and ATL stocks for management purposes.

Over time, these stocks have been managed with seasonal clo-

sures, bag limits, minimum size limits, and catch limits, i.e. quo-

tas. Size limits, i.e. minimum retention sizes, have generally

increased over time for the recreational sector (Table 1). The rec-

reational sector includes the charterboat/private fleet and the

headboat fleet. The charterboat/private fleet consists of boats

rented by day (or half day) for a small group of recreational

anglers, whereas headboats charge on a per-person, per-trip basis,

and typically have more anglers than charterboats per fishing trip.

Benchmark assessments for these stocks were conducted in

2013–2014 (SEDAR, 2013a, b, c, 2014a, b, c). Data inputs for

these ASM included landings, discards, standardized indices of

abundance, length composition, and length-at-age observations

from commercial and recreational sectors. Fishery-dependent in-

dices were derived from fishery catch-per-unit-effort (CPUE).

Fishery-independent indices and length compositions from sur-

veys were also included in the assessments, although the time se-

ries are shorter than for fishery-dependent data. For some

assessments, the charterboat/private and headboat fleets were

treated as a single recreational fleet if both are thought to behave

similarly in targeting the stock (Table 2).

In addition to fishing mortality, ASM assessments estimated

selectivity (specified to be either logistic or dome-shaped), annual

recruitment, and growth parameters. The number of growth

parameters varied among assessments. For example, K was

estimated with L1 fixed for GOM greater amberjack, whereas

both were fixed for ATL cobia and all growth parameters were

estimated for GOM cobia, GOM Spanish mackerel, GOM king

mackerel, and ATL king mackerel. For all stocks, estimates from

growth studies were available prior to the assessment (Table 3).

Natural mortality (M) varied by age in the assessment, using the

parameterization from Lorenzen (1996) and subsequently re-

scaled such that the mean value was equal to that obtained from

Hoenig (1983) using maximum observed age.

ML-based mortality estimators
Three mean length-based methods were used to estimate mortal-

ity: (i) the non-equilibrium ML estimator of Gedamke and

Hoenig (2006); (ii) the mean length with catch rate (MLCR) esti-

mator of Huynh et al. (2017); and (iii) the mean length with ef-

fort (MLeffort) estimator of Then et al. (2018). A technical

Table 1. Summary of size regulations from the recreational fishery
(in terms of fork length).

Stock Minimum legal size limit (cm) Years

GOM greater amberjack 28 in (71.1) 1990–2007
30 in (76.2) 2008–2012

GOM Spanish mackerel 12 in (30.5) 1993–2011
GOM and ATL cobia 33 in (83.8) 1985–2011
GOM and ATL king mackerel 12 in (30.5) 1990–1991

20 in (50.8) 1992–1999
24 in (61.0) 2000–2012

Only years preceding the year of the assessment are considered. Size regula-
tions were obtained from the assessment documents (Table 2). Size regula-
tions are published in inches.
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description of the three methods is provided in Supplementary

Materials A.

The analyses were based on the data from the recreational sector.

This sector was chosen because it is believed that this sector has been

most informative for inference on stock trends in the benchmark

assessments (Sagarese et al., 2016). In the southeastern United

States, the largest targeted fishing effort has historically come from

the recreational sector (Siegfried et al., 2016). The indices from the

recreational sector have also generally had the lowest root mean

square error in the age-structured assessments (Sagarese et al., 2016).

In cases where the two recreational fleets are distinct units in the as-

sessment, data from the larger charterboat/private fleet were used for

the ML-based methods. The length compositions, standardized indi-

ces of abundance, and the landings corresponding to the index were

obtained directly from the assessments (Table 2).

In contrast to the ASM which accommodates and estimates

the parameters of various selectivity functions, all ML-based

methods assume knife-edge selectivity and require an estimate of

the length at full selection (Lc) to be determined prior to the

analysis. The mode of the length composition compiled for all

years was chosen to be the Lc, which was larger than the mini-

mum retention size for all stocks (Figure 1). There was generally

no trend in the modal length over most years for the six stocks.

The annual mean length of animals larger than Lc was calculated,

and von Bertalanffy asymptotic length (L1) and growth coeffi-

cient (K) were obtained from growth studies presented during

the benchmark assessment (Table 3).

First, the ML estimator was used to estimate mortality. From

annual observations of mean length, the time series is partitioned

into stanzas of constant mortality. The total mortality rates and

the duration of each stanza are then estimated. Total mortality is

modelled as a stepwise change from one stanza to another, and

the predicted mean length changes gradually depending on previ-

ous mortality rates and elapsed time since mortality changed.

Second, the index of abundance was used in conjunction with

the mean length time series with MLCR. In this model, both the

mean length and the index are predicted to decrease gradually

after a stepwise increase in mortality and, similarly, to increase

after a decrease in mortality. This allows for an evaluation of the

consistency between the length and index data for mortality

estimation.

The ML and MLCR models were systematically fitted by vary-

ing the number of stanzas and Akaike Information Criterion

(AIC) was used to select the best fitting model, i.e. the model

with the lowest AIC score. To avoid overfitting, models with

more parameters were accepted only if the reduction in AIC was

>2 (Burnham and Anderson, 2002). Models were fitted assuming

zero, one, or two change points in mortality (additional analyses

with >2 change points were not supported by AIC).

While ML and MLCR estimate Z, we assume, as many ASMs

do, that M is constant over time. Thus, changes in Z examined

here are assumed to arise solely from changes in F. From total

mortality estimates, fishing mortality F was obtained by subtract-

ing the value of M assumed in the benchmark assessments

(Table 3). Since ML-based models also assume constant mortality

across all selected ages, the age-invariant M obtained from the

Hoenig (1983) method was used.

Third, year-specific mortality rates were estimated from mean

lengths and estimates of effort, using the MLeffort model (Then

et al., 2018). In this method, fishing mortality F is proportional to

fishing effort f via the estimated catchability coefficient q. Total

mortality Z in year y of the model is Zy ¼ qfy þM , where fy is the

effort and M was fixed in the model (to the same value used in

ML and MCLR). This formulation precludes the need to estimate

mortality in time stanzas. The effort time series was obtained by

taking the ratio of the landings (thousands of fish) and index of

abundance (CPUE, number of fish per angler hour). Since the

model requires a full time series of effort, the first year of the

Table 2. Summary of assessment models and the length composition and index of abundance for the length-based mortality estimators.

Stock Assessment model Fleet for length analyses Length time series Index time series References

Gulf of Mexico greater amberjack SS Charter/private 1981–2012 1986–2012 SEDAR (2014a)
Gulf of Mexico Spanish mackerel SS Recreational 1981–2011 1981–2011 SEDAR (2013b)
Gulf of Mexico cobia SS Recreational 1979–2011 1986–2011 SEDAR (2013a)
Atlantic cobia BAM Recreational 1982–2011 1985–2011 SEDAR (2013c)
Gulf of Mexico king mackerel SS Charter/private 1985–2012 1986–2012 SEDAR (2014b)
Atlantic king mackerel SS Charter/private 1978–2012 1980–2012 SEDAR (2014c)

The Recreational fleet combines the data from both the Charter/private and the Headboat fleets.

Table 3. Life history parameters used in the analyses for the length-based mortality estimators.

Stock L1 (cm) K (year�1) t0 (year) Lc (cm) Lmat (cm) a b tmax (yr) M (year�1) Sources

Gulf of Mexico
greater amberjack

143.6 0.18 �0.95 77.5 90 7.0e-5 2.63 15 0.28 SEDAR (2014a) and Murie
and Parkyn (2008)

Gulf of Mexico Spanish
mackerel

56.0 0.61 �0.50 39 31 1.5e-5 2.86 11 0.38 SEDAR (2013b)

Gulf of Mexico cobia 128.1 0.42 �0.53 88 70 9.6e-6 3.03 11 0.38 SEDAR (2013a)
Atlantic cobia 132.4 0.27 �0.47 95 70 2.0e-9 3.28 16 0.26 SEDAR (2013b)
Gulf of Mexico king

mackerel
128.9 0.12 �4.08 80 58 7.3e-6 3.01 24 0.17 SEDAR (2014b) and

Lombardi (2014)
Atlantic king mackerel 121.1 0.15 �3.73 80 58 7.3e-6 3.01 26 0.16 SEDAR (2014c) and

Lombardi (2014)

Parameters are defined in Supplementary Table B.1.
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model was set to the first year with available indices of abun-

dance. The equilibrium effort prior to the first year of the model

was set equal to the effort in the first year.

All three models were fit using maximum likelihood. Visual

analysis of standardized residuals, calculated by subtracting the

predicted value from the observed and then dividing by the esti-

mated standard deviation, was used to indicate the quality of fit

in the respective model. Residuals in mean lengths were calcu-

lated for all methods, with additional residuals in the indices of

abundance also calculated for the MLCR model.

Comparison among models
Two sets of quantities were used to facilitate comparison among the

ASM, ML, MLCR, and MLeffort. First, the absolute magnitude of

the F estimates from the all four models was used. Annual estimates

of F from the ASM were obtained from assessment reports

(SEDAR, 2013a, b, c, 2014a, b, c). Only estimates since the first year

of length composition data were considered here (Table 2).

Second, the annual F estimates were divided by FMSY (relative F).

The F/FMSY ratio is often relevant to management for classification

of historical and current overfishing status. Proxy reference points

are often used instead of directly estimating FMSY. In the benchmark

assessments, F30%, the fishing mortality rate that reduces the spawn-

ing potential ratio (SPR) to 0.3, was generally used as the proxy for

FMSY. The exception was in the case of ATL cobia, where FMSY was

reported for the ASM instead of a proxy (SEDAR, 2013c).

The calculation of the value of the proxy reference point

should be consistent with the assumptions of the method used to

estimate F. As a result, two separate calculations of SPR were

used. For the ASM, the value of F30% was obtained from the as-

sessment documents, while for the ML-based methods, a separate

value was calculated for F30% assuming knife-edge selectivity and

constant M with age (Supplementary Materials B). Values of F30%

were identical for ML, MLCR, and MLeffort because the selectiv-

ity and M assumptions among them were identical.

To evaluate the synchrony of relative F among models, the

proportion of years in which overfishing is estimated to occur

was calculated for four time periods: (i) pre-1995 (approximately

the first half of the time series for the six stocks), (ii) post-1995

(approximately the second half of the time series), (iii) the last 5

years, and (iv) the terminal year of the time series.

All analyses were performed in the R statistical environment

using the MLZ package, which is publicly available on the CRAN

repository (R Core Team, 2017; Huynh, 2018).

Results
For most stocks analysed here, all methods generally indicated

high mortality in the 1980s–1990s followed by a reduction in

Figure 1. Summary length compositions summed across all available years of data for the six stocks (a–f) for the ML-based mortality
estimators. Solid vertical line indicates Lc and dashed vertical line indicates L1.
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mortality since then (Figure 2). For all six stocks, the four models

agreed in the overfishing status in the terminal year of the time

series, i.e. F/FMSY > 1 for GOM greater amberjack and F/FMSY <

1 for the other five stocks (Figures 3–4).

GOM greater amberjack
There was strong agreement in the mortality estimates over time in

both terms of trend and magnitude (Figure 2a). Both the ASM and

MLeffort models showed an increase in F from 1981 to 1993 fol-

lowed by a gradual decrease from 1993 to 2012, with higher inter-

annual variability in F from MLeffort. Both models suggested very

similar declines in mortality. The ML and MLCR models showed

two changes in mortality, an initial increase to an extended plateau

in mortality during the 1990s, corresponding to the time period

surrounding the peak in the ASM and MLeffort models, followed

by a reduction in the 2000s. The F from ML and MLCR during the

1990s were higher compared to estimates from the ASM.

Furthermore, all models showed that overfishing was occurring

in 2012, the terminal year of the time series (Figure 3a). The mag-

nitudes of relative F, i.e. F/FMSY, over time were very similar

among the four models, with a very large relative F in the late

1980s and 1990s coinciding with large observed catches (SEDAR,

2014a). Although a reduction in relative F followed, overfishing

was still occurring in 2012. In addition, the four models generally

agreed on the extent of overfishing within the four time periods

(Figure 4). While a lower proportion of overfishing years was in-

ferred in the most recent 5 years for the MLeffort model com-

pared to the other three models, this appeared to be a result of

the high inter-annual variability in relative F.

GOM Spanish mackerel
The ASM, ML, and MLCR models all showed a general reduction

in mortality over time, although the trends and timing differ

(Figure 2b). The MLeffort model did not converge. The ASM

showed relatively high F in the 1980s and early 1990s followed by a

gradual reduction in F afterwards. The reduction started in the late

1990s coincident with the gillnet ban in Florida, although mortality

from all sectors (commercial, recreational, and bycatch) has since

reduced (SEDAR, 2013b). The trend from the ML model is mark-

edly different compared to the ASM and MLCR. Two changes in

mortality were indicated, with a decrease in mortality to a very low

level during the early 1990s from the initial mortality rate. This was

caused by the large increase in mean length from 1990 to 1995

(Figure 5b). Afterwards, a modest increase to an intermediate

Figure 2. Annual estimates of F from the four models (ASM, age-structured model; ML, mean length; MLCR, mean length with catch rate;
MLeffort, mean length with effort) for the six case studies (a–f). The MLeffort model did not converge for GOM Spanish mackerel. The ASM
was the BAM for ATL cobia and SS for all other stocks.
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mortality rate until the present time was estimated. The trends in

the index, however, did not support two changes in mortality

(Figure 5b). Thus, only one change in mortality, a modest decrease

over the time series, was inferred in the MLCR model (Figure 2b).

Compared to the ML and MLCR models, the ASM showed more

contrast in relative F, with overfishing occurring in 8 out of 14 years

(57%) in the pre-1995 period (Figure 4). The ML and MLCR mod-

els showed that overfishing has not occurred (Figure 3b). All three

models agreed that overfishing has not occurred post-1995.

GOM cobia
All four models indicated a reduction in mortality since the 1990s

(Figure 2c). The ASM showed an initial upward ramp in mortal-

ity followed by a gradual decrease after 1990. The MLeffort model

showed a large decrease prior to 1986–1990 (effort data were not

available prior to 1986), but after 1990, the mortality trend closely

mimicked that inferred in the ASM in magnitude over time. The

ML and MLCR models both estimated two changes in mortality,

with a temporary decrease in the late 1990s followed by a modest

increase to a mortality rate that is less than the initial estimated

mortality rate. This pattern was inferred from the synchronous

increase and decrease in the mean length and index in the late

1990s (Figure 5c). The ML and MLCR models estimate much

higher F than the other two models (Figure 2c).

The relative F in MLeffort was lower over time than in the

other three models. Pre-1995, an increase and decrease in relative

F corresponded to overfishing in 1 out of 9 years (11%) in the

MLeffort model, but 7 out of 16 years (44%) in the ASM

(Figure 4). During the same time period, the ML and MLCR esti-

mated a plateau in mortality which indicated overfishing in all in-

cluded years. Post-1995, overfishing has not occurred based on all

four models (Figure 3c).

ATL cobia
Differing trends in mortality were inferred among the four models

(Figure 2d). While there were trends in the mean length over time,

the ML model indicated zero changes in mortality based on AIC.

However, the MLCR model indicated a decrease in mortality, largely

based on the increase in the index after 1995 (Figure 5d). The

MLeffort model showed a gradual decrease in mortality over time.

The ML-based models estimate lower F than the ASM in recent years,

although there is high inter-annual variability in F estimates in the

latter without a clear trend over time. Based on the relative F from all

four models, overfishing has not occurred (Figures 3d and 4).

GOM king mackerel
Differing trends in mortality were estimated among the models

(Figure 2e). The stability in mean lengths over time resulted in

Figure 3. Annual estimates of F/FMSY (relative F) from the four models for the six case studies (a–f). FMSY was reported from the ASM for
ATL cobia while for all other methods, the FMSY proxy is F30%. Separate calculations of F30% were used for the ASM and ML methods.
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estimates of constant F over the entire time series from the ML

and MLCR models. The trend in F in the MLeffort model was rel-

atively flat as well. Fishing mortality was much higher in the ASM

than in the ML-based models from the 1980s to the mid-2000s,

although the difference decreased with a pronounced drop in F in

the ASM the late 2000s.

The ASM showed that overfishing was occurring over much of

the pre-1995 period, contrary to the other three models which

showed no overfishing in the same time period (Figure 3e). In the

early part of the post-1995 period, the ASM showed that overfish-

ing was occurring (20–40% of years post-1995) until mortality

was reduced shortly after 2000. The ML-based models indicated

no historical overfishing.

ATL king mackerel
The F trend in the ASM is relatively flat with a slight decrease in

the recent years (Figure 2f). The ML and MLeffort models produce

relatively stable F over time as well, although the magnitude is

higher in these models than in the ASM. The MLCR model produ-

ces a pronounced stepwise increase in F in the mid-1990s due to

the pronounced decrease in the index at this time (Figure 5f).

The ASMs indicated that overfishing occurred in 29% (5 out of

17 years) of pre-1995 years (Figure 4). The ML-based models here

also did not indicate overfishing in the stock history (Figure 3f).

Residual analysis
For each of the ML-based models, residuals were analysed visually

to examine goodness of fit (Supplementary Materials C). The

model selection procedure with the ML model generally selected

the model which minimized residual trends except in the case of

ATL cobia (Supplementary Figure C.1). In the MLCR model,

an extensive trend of positive and negative residuals of the

mean lengths and index, respectively, was observed over time for

GOM Spanish mackerel (Supplementary Figure C.2). Similarly,

negatively correlated residuals were also present for ATL king

mackerel in the most recent years of the analysis. In the

Figure 4. The proportion of years with overfishing as estimated with the four models within the respective time periods for the six stocks.
The MLeffort model did not converge for GOM Spanish mackerel. For pre-1995 and post-1995, numbers indicate the number of years in the
assessment for the respective time period.
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MLeffort model, there were trends in residuals over the course of

the entire time series for both GOM and ATL king mackerel

(Supplementary Figure C.3).

Discussion
The historical mortality pattern observed here, high mortality in

the 1980s–1990s followed by a reduction, is common for south-

eastern US stocks that were targeted by fisheries that were

unregulated during these decades (Siegfried et al., 2016).

Although differences in the magnitude of F/FMSY varied for the

terminal year of the analyses, which potentially affect the manage-

ment advice, there was agreement in the stock perception, i.e.

overfishing vs. not overfishing, among the ML-based models and

the ASMs for the six case studies.

For data-limited situations, there is potential to use ML-based

models to explore historical changes in mortality over time.

Despite only using a subset of the data, the results are likely to be

consistent with what might be obtained from an ASM. The ML

and MLCR models provide a series of historical mortality rates,

although it is recognized that the changes in mortality over time

will be coarser than in models with year-specific mortality rates.

This is due to the stepwise, time stanza structure of the ML and

MLCR models. The MLeffort model can provide year-specific

mortality rates, and F estimates could be smoothed post hoc to de-

scribe the trend over time if there is high inter-annual variability.

Trends in recruitment to the recreational sector
The assumption of constant recruitment to length Lc was likely

violated for GOM Spanish mackerel due to the changes in the

dynamics of the shrimp fleet over time which affected bycatch of

smaller animals. In the ASM assessment, the shrimp fleet was the

highest source of fishing mortality (with 100% discard mortality

assumed) until the late 1990s, when effort subsequently decreased

(SEDAR, 2014b; Figure 6). This reduction increased survival and

recruitment to size Lc (39 cm in this study), which could have

caused the decrease in the observed mean length from the recrea-

tional fleet (Figure 5b).

For the MLeffort model, non-convergence for GOM Spanish

mackerel was caused by the data conflict where the recreational

effort and mean length concurrently decreased (Figures 5b and

6). An increase would have been expected based on the observed

effort trend alone in the mean length. Concurrently, the gradual

increase in the index of abundance with the decrease in ML since

the mid-1990s would support the hypothesis of increased recruit-

ment to the recreational fishery (Huynh et al., 2017). Fewer

change points were inferred with the MLCR model compared to

the ML model. If there are trends in recruitment, MLCR can

avoid overfitting spurious trends in the mean length data. The

observed trends in the paired residuals of mean length and the

abundance index in the MLCR model were also consistent with

hypothesized increased recruitment (Supplementary Figure C.2).

Indeed, the ASM corroborates this hypothesis since it estimated

an increase in abundance of animals recruiting to the 39-cm

length class during the same time period (Figure 6).

While trends in mortality are affected by factors external to the

recreational sector, the analysis of residuals in the MLCR model

and non-convergence of the MLeffort model allowed us to diag-

nose issues in the application of the ML-based models for GOM

Figure 5. Observed (connected points) and predicted mean lengths (coloured lines) from the three length-based mortality estimators, and
observed and predicted index for the MLCR model for the six case studies (a–f).
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Spanish mackerel without external information. With the ASM,

we can corroborate that bycatch mortality may have been the pri-

mary driver of the historical stock dynamics. In isolation, the

length composition from the recreational fleet may not provide

sufficient information on the stock history, i.e. reductions in F.

This is evident in the contrasting trends in mortality in the ML

model and ASM since the mid-1990s (Figure 2b). Overall, the

general presence of large animals in the length composition rela-

tive to L1 would indicate that the GOM Spanish mackerel stock

is in generally good shape (Figure 1b).

The impact of bycatch mortality from the shrimp fleet would

not be as noticeable in the length-based analysis for GOM and ATL

king mackerel, since shrimp bycatch is a minor source of mortality

relative to the recreational fleet. Nevertheless, for ATL king

mackerel, large residuals in the mean lengths and index were

observed in the most recent years of the MLCR models

(Supplementary Figure C.2). The increasing mean length and de-

creasing index since 2007 would be consistent with decreased re-

cruitment (animals of length Lc). The ASM for ATL king mackerel

estimated a decreasing trend in recruitment of age-0 animals since

2003. The qualitative information about recruitment trends from

the MLCR model are further supported by the reduced recruitment

estimates from the ASM after accounting for the time lag from age

0 to the age of full selection to the recreational fishery (SEDAR,

2014c).

Management actions may need to be more precautious when

presented with information about recent reduced recruitment.

Overall, the GOM Spanish mackerel and ATL king mackerel

case studies highlight the benefit of indices of recruitment in a

length-based analysis. Such information can be incorporated

into the analysis to account for variable recruitment (Gedamke

et al., 2008).

These two case studies also highlight the fact that ASMs should

not be replaced by simpler methods without cautious considera-

tions. ASMs provide more modelling options to accommodate

multiple drivers of fishing mortality and productivity, as well as

more diagnostic tools to evaluate the quality of the assessment.

Nevertheless, in data-rich scenarios, the ML-based methods can

be used as a diagnostic to evaluate and explain how the mean

length has changed over time (through fishing mortality or other

causes) (e.g. SEDAR, 2013c). When there are conflicting results,

diagnostic procedures can provide additional insight on the

causes of model or data conflict. Models which incorporate mul-

tiple data types are advantageous, because the agreement (or lack

thereof) between data types can be used to determine whether the

chosen model is appropriate for the stock of interest.

Life history parameters
The ML-based models and their corresponding reference point

proxies require simpler life history assumptions than the ASM.

With ASMs, growth incorporates variability in size at age and

parameters may be estimable within the model (Francis, 2016). In

contrast, growth is fixed and assumed to be deterministic with

age in the ML-based models, although simulations have suggested

robustness of the ML-based models to this assumption (Then

et al., 2015; Huynh et al., 2018).

In many ASMs, including those presented here, natural

mortality was parameterized to asymptotically decline with age.

Age-varying M would violate the assumption of age-constant Z,

especially for the youngest age classes which may experience

much higher M than older ones (Lorenzen, 1996). If selectivity

were restricted to the oldest age classes, then the violation of this

assumption could be minimal as M is similar among these

ages. Simulation studies can be used to evaluate the bias, if any,

in mortality estimates from the ML-based methods arising from

age-varying M.

Errors in growth and natural mortality have similar effects on

mortality estimates in both length-based methods and ASMs. An

overestimate of asymptotic length leads to the perception of an

overly truncated size composition and smaller mean length,

resulting in an overestimate of fishing mortality. Since length

data contain information on total mortality, an overestimate of

natural mortality would result in an underestimate of fishing

mortality. Simulation studies and sensitivity analyses have largely

confirmed these trends (Clark 1999; Hordyk et al., 2015; Huynh

et al., 2017). Further work is needed to evaluate whether mortal-

ity estimates from a length-based method is more sensitive to

errors than those from ASMs.

In data-limited situations, uncertainty in mortality estimates

can be evaluated in several ways. While confidence intervals can

be obtained from the Hessian matrix of maximum likelihood

models, the intervals are conditional on the assumptions of the

model, including that life history parameters are known correctly.

Alternatively, Monte Carlo sampling of life history parameters

from parametric distributions (Huynh et al., 2017; Nadon, 2017)

and sensitivity analyses of alternative parameter values (Gedamke

and Hoenig, 2006) have been employed to characterize uncertainty

of mortality estimates. Bayesian methods that employ life history

priors can also be used to make probabilistic statements regarding

the mortality estimate and overfishing status (Harford et al., 2015).

Figure 6. Upper: Estimates of relative effort for GOM Spanish
mackerel from the recreational fleet, obtained as the ratio of the
recreational catch and index of abundance, and the shrimp bycatch
fleet, estimated as described in Linton (2012). Estimates are scaled so
that the time series mean is one. Lower: Relative abundance at the
38-cm length bin (relative to the time series mean) estimated from
the ASM. This length bin corresponds to the presumed length of
recruitment (39 cm) to the recreational fleet in the ML-based
models. Increased recruitment to the recreational fleet from
decreased shrimp bycatch mortality is hypothesized to decrease
the mean length despite the decrease in recreational effort.
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Such methods can be employed in the ML-based models here to

calculate confidence intervals or posterior intervals in F and F/

FMSY.

Notably, confidence intervals and posterior intervals are

conditional on the assumptions of the model. The length-based

methods used here assume constant recruitment, but only the

MLCR model allows for evaluation of this assumption (Huynh

et al., 2017). Even for the MLCR model, confidence intervals for

mortality estimates would not include the effect of failure of this

assumption when in fact there is a trend in recruitment over

time.

Selectivity and retention behaviour
Complex fishing behaviour can be modelled in ASMs, albeit at

the cost of estimating many, sometimes confounding, selectivity

parameters. Multiple fishing fleets with disparate selectivity pat-

terns and fishing behaviours are typically modelled separately,

and there may be enough information to model logistic and

dome-shaped selectivity functions. Length composition of dis-

carded and retained catch allow for estimation of the vulnerability

and retention functions, the product of which would be the effec-

tive selectivity of the gear for retained catch. Finally, changes in

size regulations can be modelled with time-varying features of the

ASM (Methot and Wetzel, 2013). For the ML-based models,

knife-edge selectivity is assumed at length Lc. Thus, the analysis

uses a subset of the length composition data so that only animals

assumed to be fully selected are included in the calculation of the

mean length.

Application of the data-limited models should consider if

changes in mean length occurred due a change in retention be-

haviour as opposed to a change in mortality. We chose values of

Lc that were larger than any implemented minimum retention

size for the stocks in this study. In this way, all lengths larger

than Lc would have the same presumed selectivity to minimize

the effect of the management regulations. However, to the ex-

tent that there has been variable fishing over time on fish smaller

than Lc, the assumption of constant recruitment is violated by

being confounded with fishing mortality. Changes in bag limits

could alter discard and retention behaviour; for example, the

implementation of a bag limit may increase discarding of

smaller animals in favour of retaining larger ones. To account

for this, one would need to evaluate whether there were signifi-

cant changes in the length distribution of retained catch once

those regulations were implemented.

The age-structured assessments estimated dome-shaped selec-

tivity for the recreational fleet for three of the six stocks, these

being GOM greater amberjack and both GOM and ATL stocks

of king mackerel. This contrasts with the knife-edge selectivity

assumption made with the ML-based models. If the selectivity of

the fleets were dome-shaped, then it is presumed that mortality

would be overestimated by the length-based models. However,

there was no consistent discrepancy for these three stocks in this

study. Mortality estimates for GOM greater amberjack did not

substantially differ between those in the ASM and from ML-based

models. However, mortality estimates from ML-based models

were higher than those in the ASM for ATL king mackerel but

lower for GOM king mackerel. Certainly the degree of doming

could affect the magnitude of the discrepancy. High F, such as

those seen in GOM greater amberjack, would decrease the influ-

ence of dome selectivity in the bias of mortality estimates, since

fewer animals would survive to the larger size classes affected by

the dome selectivity.

Uncertainty in catch and effort
In any assessment, the quality of the data and their representa-

tiveness to the underlying population dynamics should be evalu-

ated. For example, since discard estimates had generally large

coefficients of variation (Siegfried et al., 2016). In data-limited

situations, discard data may not be available. However, in a man-

agement context, it is still important to consider the magnitude

of discard mortality and whether it can be reduced. As another

example, expert judgement is needed to decide if the CPUE can

serve as index of abundance. Spanish mackerel and cobia are

reported to be opportunistically caught by the recreational fleet,

resulting in high percentages of zero catch (Bryan and Saul,

2012). This may degrade the quality of the CPUE as an index of

abundance. Such uncertainties can be addressed through im-

proved data collection programmes. In this case study, continued

investment in fishery-independent surveys will produce a long-

time series sufficient for inferring changes in mortality over time.

One must obtain length compositions from multiple years for

application of the ML-based models used in this study. In this

study, the recreational sector data were obtained from MRFSS

(Marine Recreational Fisheries Statistics Survey) and its successor

MRIP (Marine Recreational Information Program), which are

design-based sampling programmes for the charter and private

boat fleet, and from SRHS (Southeast Region Headboat Survey),

which strives to be a census of all headboats in the region. We fol-

lowed the decision of the assessment team in regards to combin-

ing or separating the data from these two programmes.

Data from multiple fleets or sectors could be combined if the

fleets are believed to operate similarly temporally and spatially.

Otherwise, mortality estimates can be confounded by the con-

trasting fishing effort and selectivity of the different fleets. For ex-

ample, a multimodal length composition that arises from using

two very different gears would not be easily accommodated by

the assumptions of the ML-based models. Uncertainty in the

composition data could be evaluated by comparing the length

data from the different gear sectors separately. Differences in

mortality estimates would be attributable to, among other factors,

disparate selectivity patterns and sampling among gears. In these

cases, mortality estimates are likely to have low precision (Pons

et al., 2019).

The MLeffort model provides year-specific mortality rates, but

the fit to the mean lengths varies from good in the case of GOM

greater amberjack to poor, as in the case of GOM king mackerel

(Figure 3). For multispecies fisheries, nominal effort such as days

fished may not be an indicator of targeted effort due to switches

in targeting. As effort in the recreational fisheries examined here

is not allocated on a species-specific basis, methods such as the

so-called “guild” approach, where a subset of fishing trips that are

believed to have targeted the stock of interest are identified based

on catch of associated species, are used to develop indices for

these fleets (SEDAR, 2011; Smith et al., 2015). Poor estimates of

recreational effort could have contributed to poor performance

of the MLeffort model for GOM and ATL king mackerel. Formal

statistical tests of model residuals, e.g. tests of normality or runs

test, could be used to accept or reject a model.
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Conclusion
The goal of this paper was to evaluate whether length-based

methods could perform reasonably well and indicate when there

are problems in the analysis. We did not intend to evaluate

whether length-based methods could replace ASMs. Overall, ML-

based methods can provide similar results, i.e. mortality trends

and classifying overfishing status, as those of age-structured

assessments. Such case studies have important ramifications for

fishery managers who manage many stocks. Simple methods can

be used to determine the overfishing status for stocks that are be-

ing assessed for the first time. If managers desire to use length-

based methods, then such analyses can prompt allocation of more

resources for data collection to improve mortality estimates. As a

large majority of stocks worldwide do not and will not likely have

fully age-structured assessments in the near future, fishery man-

agers can use studies such as this in elucidating likely results from

ML-based mortality estimators.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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